以下文章转载自:
American Journal of Neuroradiology
Presurgical Mapping with fMRI and DTI: Soon the Standard of Care?

The technique of fMRI has been around for over 30 years, and DTI for about 15 years. The first application of fMRI was by Ogawa et al, in 1990. In a rat model, this team was able to manipulate the blood oxygen level–dependent (BOLD) signal by inducing changes in deoxyhemoglobin concentrations with insulin-induced hypoglycemia and anesthetic gases. About a year later, Kwong and Belliveau published the first images of cerebral areas that responded to visual stimulation and vision-related tasks.
DTI was first described by Basser et al, who were experimenting on a voxel-by-voxel characterization of 3D diffusion profiles, which took into account anisotropic effects (instead of eliminating them, as in standard DWI). Tractography (or fiber tracking) was developed by applying statistical models to DTI data to obtain anatomic fiber bundle information.
Although both fMRI and DTI are now currently available in most scanners, well beyond the framework of academic institutions and research protocols, these techniques are not quite considered “standard of care.” Indeed, the processes that govern the translation of new technology into clinical practice are complex. Even more complex are the processes that lead to establishing clinical practice as standard of care, particularly at a time when established patterns of care delivery are being increasingly challenged and economic difficulties affect all aspects of society, certainly including health care.
However, some challenges, especially with fMRI, go back to basic cerebrovascular physiology. The cerebrovascular response to neuronal activation, also referred to as “functional hyperemia,” was first recognized in 1890 by Roy and Sherrington, who initially proposed a metabolic hypothesis to the phenomenon, ie, mediation via release from neurons of vasoactive agents in the extracellular space. The major role of astrocytes as key intermediaries in the neurovascular response — being interposed between blood vessels and neuronal synapses via their foot processes as modeled in the “tripartite synapse model” of the neurovascular unit — has since been recognized. Although complex, astrocyte response to changes in synaptic activity is primarily mediated by glutamate receptors through changes in intracellular Ca2+ concentration.
In fMRI, contrast is based on the BOLD effect, which reflects local shifts of deoxygenated-to-oxygenated hemoglobin ratios due to local increases in blood flow in excess of oxygen utilization following brain activity. As a result, the foundation of the fMRI BOLD signal is based on local changes in cerebral blood flow that are not linearly related to the metabolic changes inducing the flow change.
Therefore, BOLD fMRI rests on 3 major approximations: 1) the technique does not directly reflect neural activity, ie, generation and propagation of action potentials, synaptic transmission, or neurotransmitter release/uptake; 2) the changes in BOLD signal originate from that portion of the vasculature experiencing the greatest change in oxygen concentration, which occurs in the venules in the immediate vicinity of the active neurons; and 3) more importantly, fMRI signal relies on intact “neurovascular coupling,” the phenomenon that links neural activity to metabolic demand and blood flow changes.
The main reason fMRI is clinically useful most of the time is that under most circumstances neurovascular coupling remains fully intact, unaltered by confounding disorders that can interfere with this relationship. However, it has long been known that neuronal activation results in local blood flow increases that exceed local oxygen consumption, so that the oxygen utilized may constitute a small fraction of the amount delivered. Under normal conditions, the oxygen concentration in draining venules increases during neuronal activation. The original researchers who discovered this phenomenon named it “neurovascular uncoupling” or “neurovascular decoupling.” From a medical perspective, “uncoupling” or “decoupling” implies a pathologic condition, suggesting something abnormal about tissue that demonstrates this phenomenon. More recently, researchers have preferred the term “functional hyperemia” to describe the phenomenon. In fact, when there is interference with the mechanism producing functional hyperemia, the term "neurovascular uncoupling" has been re-applied, albeit with a completely opposite meaning from that originally used. Impairment in the flow response leads to neurovascular uncoupling and a reduced BOLD signal in response to neural activity, which can lead to false-negative errors in fMRI maps.
John Ulmer, reporting on a series of 50 patients, found that although accurate cortical activation could be demonstrated most of the time, various cerebral lesions could cause false negatives in fMRI results when compared with other methods of functional localization, suggesting contralateral or homotopic reorganization of function. He further suggested that pathologic mechanisms such as direct tumor infiltration, neovascularity, cerebrovascular inflammation, and hemodynamic effects from high-flow vascular lesions (ie, arteriovenous malformations and fistulas) could trigger “neurovascular uncoupling” in those patients. Neurovascular uncoupling, and other pitfalls of fMRI, are briefly discussed.
David Mikulis discusses “neurovascular uncoupling syndrome,” where lack of functional hyperemia during neuronal activation can have long-term consequences on the integrity of the tissue in the absence of acute ischemia.
Jay Pillai discusses the successful clinical application of a technique to improve the consistency of BOLD fMRI by using a breath-holding technique.
Aaron Field discusses the technique, clinical use, and some limitations of DTI and tractography, and describes patterns of alteration of white matter fiber tracts by neoplasms and other lesions.
Lastly, Wade Mueller shows that a neurosurgeon may obtain significant improvements in clinical outcomes and a drastic reduction in complication rates when working with a team that provides presurgical mapping of cerebral lesions by using fMRI and DTI (wisely, fully acknowledging their limitations) and when various team members clearly communicate using a common language.
Functional MRI and DTI are extremely useful techniques that have become increasingly available to neuroradiologists in recent years. As with any technique, these work best as parts of a whole. A good understanding of physiologic mechanisms is necessary to make us good “functional” specialists, and a good understanding of the limitations of any technique is necessary to make us better physicians.
Image modified from: Jellison BJ, Field AS, Medow J, et al. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns.
近日,美德医疗磁共振病人监护仪在中国医学科学院阜外医院成功装机使用。该设备可在 3T 磁场强度下监测病人血氧、血压、脉率、灌注等生命体征,突破了传统监护仪在强磁场环境下的应用限制。阜外医院作为国家级心血管病诊疗中心,年磁共振检查量居行业前列。此次设备的引入,不仅为进行磁共振检查的危重、小儿、麻醉等特殊患者提供更可靠的生命体征监测保障,更是国产化替代在高端医疗设备领域的一次成功实践,为心血管领域诊疗安全与效率的双重提升保驾护航。
7月5日,“fMRI 科研与临床应用”沙龙贵阳站在贵阳市贵阳诺富特酒店顺利举行。本次沙龙由深圳市美德医疗电子技术有限公司与杭州脑海科技有限公司联合主办。沙龙邀请了杭州师范大学臧玉峰教授、首都师范大学梁佩鹏教授、浙江师范大学贾熙泽博士、美德医疗吴杞柱博士进行报告,由美德医疗总经理汤洁主持。来自贵州省人民医院、贵州医科大学附属医院、贵阳市第二人民医院、贵黔国际总医院、贵州省康复医院、贵阳市妇幼保健院、遵义医科大学第三附属医院等贵州省内多家知名医院的医学专家和同学参与了此次活动。活动伊始,贵阳省人民医院医学影像科主任王荣品致欢迎辞。他指出,功能磁共振成像(fMRI)技术发展日新月异,从传统的神经外科术前功能定位,到如今与人工智能、多模态影像融合及神经调控技术的联合创新应用,fMRI正推动神经科学、精神病学与临床医学的深度变革。他呼吁加强医院医生与高校学者之间的相互交流与合作,推动fMRI技术的临床应用转化,为患者的预测、治疗和康复提供更全面、安全的解决方案。杭州师范大学臧玉峰教授以《fMRI的临床应用》为题,从脑功能障碍切入,结合实际案例深入浅出地介绍了fMRI在术前功能区定位、、经颅磁刺激(TMS)治疗精准定位以及异常脑活动定位诊断中的作用。首都师范大学梁佩鹏教授聚焦任务态fMRI,阐释《任务态fMRI及其在临床各学科中的应用》。他指出,脑功能上的改变早于脑结构变化,借助 fMRI 能够更早发现患者的脑功能异常。此外与静息态fMRI相比,任务态fMRI在预测行为表现、解释个体差异方面更具优势。随后,浙江师范大学贾熙泽博士,美德医疗吴杞柱博士分别围绕《静息态fMRI分析方法及其在脑疾病研究中的应用》、《fMRI可以同步记录哪些信息?——磁兼容设备与技术介绍》发表了主旨演讲。沙龙期间,与会专家积极提问,发表见解,与演讲嘉宾展开深入的交流和讨论。热烈的互动加深了大家对 fMRI技术原理及其临床应用途径的理解;不同学科领域思想的碰撞,开阔了大家的视野,为探索fMRI应用方向提供了更多可能性。美德医疗将与合作伙伴一道继续组织类似的沙龙活动,聚焦fMRI科研与临床应用,构建多学科协作平台,让不同领域的专家学者得以交流探讨,共同为推动 fMRI 在神经精神疾病领域的相关研究及临床实践贡献智慧和力量。
美德医疗深耕医疗设备研发制造多年,凭借对临床需求的精准洞察与前沿技术的持续攻关,在医疗技术创新赛道稳步前行,已成为兼具技术深度与行业口碑的医疗企业。6月,美德医疗火力全开,接连亮相香港理工大学UBSN神经科学会议&研讨会、广东省医学会第14次影像技术学学术会议、湖南省医师协会放射医师分会2025年学术年会…以硬核产品与创新方案,点燃展台人气,收获行业高度关注!神经科学前沿:香港理工大学UBSN会议在香港理工大学UBSN神经科学会议&研讨会上,美德医疗聚焦神经科学领域需求,携fMRI脑科学整体解决方案参展。模拟磁共振系统助力受试者提前适应扫描环境,脑功能视听觉刺激系统可精准呈现刺激任务诱导特定脑区激活,磁共振腔内监测系统则实时保障数据质量。三者协同发力,为任务态 fMRI 研究与诊疗提供全流程支持,助力神经科学迈向更精准、高效方向。影像技术盛会:广东省医学会影像技术学会议广东省医学会第14次影像技术学学术会议现场,美德医疗以“专业影像配套设备提供商”身份亮相现场,其国内率先通过NMPA认证的磁共振病人监护仪成为全场焦点。这款设备突破传统监护仪在强磁场环境下的应用限制,通过特殊屏蔽技术与抗干扰设计,实现磁共振检查过程中对患者生命体征的实时监测,对危重患者、镇静中的小儿患者、麻醉病人等特殊情况下进行的磁共振检查而言,为医疗安全提供了坚实保障。围绕新产品新技术新应用,美德团队积极与临床及一线学者展开深度交流,共同推动影像技术的进步与发展。专业培训学术赋能:第十五届《MRI 信号分析与图像解读》高级培训班与北京友谊医院合作举办的MRI信号分析与图像解读培训班已延续至第十五届,组织培养了近万名放射科医生参与深度学习及交流,一直由美德医疗全面负责项目的运行服务工作,为历届培训班的顺利开展保驾护航。本次培训班汇聚了国内知名磁共振专家,课程设置精心,理论与实践并重,致力于让大家学有所成,携手共进,为提升我国医学影像水平、造福广大患者而不懈努力!放射医师年会:湖南省医师协会放射分会年会6月27-29日,亮相湖南省医师协会放射医师分会2025年学术年会,美德医疗基于对放射医学领域的持续深耕,精心呈现“磁共振被试监测与监护系列”,通过不同视野、不同刷新率满足各应用场景的定制要求,多种生理信号采集方式监测患者生命体征,以及定制化软件进行眼动追踪和头动调整,实时监测人物状态,提升扫描数据质量,为放射医学发展注入“美德力量”,协同发展放射诊疗质量提升路径。四场行业学术会议的精彩亮相,是美德医疗技术实力与品牌魅力的生动展现。未来,美德医疗将持续深耕医疗领域,以创新驱动发展,以技术为钥,以客需为锚,以匠心为帆,为行业发展、医疗服务升级输出更多价值,期待与您再次相聚!
在医疗科技领域,国产化创新力量正强势崛起,不断突破技术壁垒,改写行业格局。美德医疗自主研发的磁共振病人监护仪作为国内国产无磁监护领域率先通过NMPA注册的产品,自上市以来成绩卓著,仅半年便在数十家医疗机构成功装机,掀起了无磁监护设备国产化应用的热潮。自 2004 年成立以来,美德医疗便锚定磁共振专业配套产品研发方向,深耕细作二十余载。凭借一支勇于创新、专业务实的高素质团队,在脑功能磁共振成像(fMRI)专业设备及技术研发生产领域披荆斩棘,积累了深厚底蕴。此次磁共振病人监护仪的问世,是公司在高新技术国产化征程中迈出的坚实一大步,打破了长期以来国外产品在该领域的垄断局面,填补了国产空白市场,彰显出强大的技术实力与创新魄力。部分装机照片该监护仪采用先进磁兼容技术,在强磁场环境下运行稳定,精准监测患者血氧饱和度、血压、脉率、灌注等关键生命体征,为磁共振检查中的患者安全筑牢防线。在性能稳定性、监测精准度、操作便捷性等方面表现出色,契合临床需求,短短半余年,装机用户已覆盖数十家医疗机构,遍布北京、上海、山西、陕西、四川、山东、江苏、浙江、广东等省份,以卓越性能和品质赢得市场认可!部分装机照片未来,美德医疗将持续加大研发投入,立足国产化创新,推动技术与产品迭代升级,为医疗影像事业发展注入更多本土智慧与力量。同时,不断提升产品质量与服务水平,为广大用户打造更优质、全面的医学影像配套解决方案。
2025年4月13日,由深圳市美德医疗电子技术有限公司主办的第15届Task-fMRI基础培训班在深圳总部圆满收官。来自全国各地医疗机构、高校的临床医生、科研萌新齐聚鹏城,通过三天的理论实践深度交融,完成对fMRI技术的系统性学习,助力学员掌握fMRI技术的核心技能。培训班延续"理实结合、学科交叉"的特色,特邀深圳大学成晓君教授、王超教授等领衔授课。课程设置两大核心模块:基础理论精讲涵盖fMRI原理、实验范式设计及统计学应用;实践操作带教覆盖E-Prime任务编程、SPM数据处理全流程。注重培养学员的自主操作能力,使学员们能够切实掌握Task-fMRI的数据处理方法,实现从零基础到独立完成数据处理过程。为响应学员在教学过程中反馈的需求:结合核磁扫描及配套脑科学研究设备的操作使用,系统梳理fMRI实验从设备操作到数据采集的全流程。吴杞柱博士带领一众学员观摩了美德医疗一系列脑科学研究设备,详细介绍了美德模拟磁共振(Mock MR)、磁共振多参数被试监测系统以及脑功能视听觉刺激系统在fMRI实验中的使用,加深学员对task fMRI数据采集过程的理解。为期三天紧凑而丰富的教学及实操课程,让一众学员们表示受益匪浅,他们认为这次培训干货满满,不仅提高了自己的专业技能,还为今后的研究工作提供了有力的支持。未来,我们将继续深耕脑智科学基础研究领域,持续服务于客户需求,致力于打造医学影像医学研用一体化平台,为中国脑科学事业发光发热!